MENU

| AR

Sedes

Cursos

Carreras

Programas Ejecutivos

Paises

Todo lo que los profesionales de Marketing deben saber sobre WhatsApp Business

Todo lo que los profesionales de Marketing deben saber sobre WhatsApp Business
#Marketing
22 de ene - min de lectura


Casi el 100% de los usuarios de smartphones tienen instalada la aplicación de mensajería instantánea WhatsApp. Además, es una de las apps que más se utiliza a diario. Dado su éxito, esta  herramienta que es  propiedad de Facebook, acaba de lanzar una solución para las empresas, con el objetivo de que las organizaciones puedan comunicarse por esta vía con sus clientes. Por este motivo, ningún profesional de Marketing debería dejar de tener en cuenta las siguientes cuestiones:
  • Es una aplicación de Android: WhatsApp Business es una aplicación de Android diseñada para pequeñas empresas. Con la aplicación, las marcas pueden crear y gestionar perfiles comerciales, que son como páginas de Facebook para WhatsApp. Estos contienen información básica sobre el negocio, como una descripción, dirección de correo electrónico, dirección física y URL del sitio web.
La aplicación también proporciona herramientas de mensajería que permiten a las empresas comunicarse más fácilmente con sus clientes a través de WhatsApp. Por ejemplo, es posible configurar saludos y mensajes automáticos, así como definir respuestas rápidas para solicitudes comunes.
  • El uso de WhatsApp Business desbloquea la función del escritorio: Las empresas que usan WhatsApp Business no necesitarán usar la aplicación de Android exclusivamente para enviar y recibir mensajes, porque podrán hacerlo desde una aplicación web de WhatsApp Business, lo que les permitirá administrar su presencia de WhatsApp desde la computadora.
 
  • Disponibilidad: WhatsApp Business se puede descargar a través de Google Play Store en Estados Unidos, Reino Unido, México, Italia e Indonesia. La firma ya anunció que la herramienta será lanzada globalmente en las próximas semanas.
 
  • Datos analíticos: Para ayudar a las empresas a comprender mejor cómo funcionan sus actividades comerciales de WhatsApp, el mensajero les dará acceso a datos analíticos, como la cantidad de mensajes leídos. Si bien parece que la funcionalidad analítica será bastante rudimentaria para comenzar, dada la experiencia de Facebook en esta área en su red social central e Instagram, se espera que este sea una característica que se desarrolle con el tiempo.
 
  • Las cuentas comerciales serán designadas como tales: Las empresas que configuran perfiles mediante el uso de WhatsApp Business tendrán sus perfiles etiquetados como perfiles comerciales para que los usuarios de la app que interactúan con esos perfiles comprendan que están interactuando con una empresa. Las compañías verificadas tienen una etiqueta que indica que se han verificado.
 
  • Las empresas no pueden comunicarse con todos los usuarios: Las firmas que utilizan WhatsApp Business no podrán ponerse en contacto con los usuarios de WhatsApp cuando lo deseen. En cambio, los usuarios deben optar por recibir comunicaciones de una empresa. Esto significa que las organizaciones que quieran utilizar la plataforma de mensajería deberán desarrollar estrategias de marketing y participación que promuevan dicha aceptación.
 
  • Tipo de usuarios: Mientras que WhatsApp Business está diseñado para pequeñas empresas, WhatsApp también permite a compañías más grandes como KLM Royal Dutch Airlines interactuar con los usuarios al integrar sus propias aplicaciones directamente en la plataforma de WhatsApp.
Más allá de sus características, los profesionales de Marketing deberían recordar que WhatsApp es una aplicación de mensajería, por lo que no es exactamente como Facebook e Instagram y no debe tratarse de la misma manera. También es más popular en algunos países que en otros, lo que influirá de manera realista en el éxito de cualquier negocio en la plataforma.

Otras Noticias

Ejemplos reales de cómo la Ciencia de Datos ayuda a resolver problemas img
#Datos

Ejemplos reales de cómo la Ciencia de Datos ayuda a resolver problemas

El profesional de Data Science, también conocido como Data Scientist, es un experto en resolución de problemas, ayudando a las empresas a reducir costos, aumentar la productividad y proporcionar datos para la toma de decisiones, incluso durante las crisis económicas. Por todo esto, el científico de datos es una de las profesiones más demandadas en el presente y con mejores perspectivas a futuro.  Este profesional, objetivamente, tiene el papel principal de transformar los datos en inteligencia para el negocio.  Ejemplos de cómo la Ciencia de Datos ayuda a tomar decisionesLas armas de Data Scientist tienen una conexión directa con la inteligencia lógica, el monitoreo y la interpretación precisa y precisa de los algoritmos.A continuación, presentamos preguntas y situaciones que sirven como ejemplos de aplicaciones de Data Science:➜ Mostrar qué productos realmente interesan a los clientes de una empresa.➜ En los próximos dos meses, ¿qué clientes probablemente no pagarán?➜ En el período posterior a la crisis, ¿cuánto tiempo le tomará a una compañía en particular restablecer su negocio?  ➜ Para que esto suceda, ¿qué acciones deben tomar por adelantado?➜ ¿Es mejor invertir en acciones o comprar / alquilar equipos más modernos para la producción?➜ ¿Es mejor contratar a más personas el año que viene? Si es así, ¿en qué áreas será rentable el retorno? Cómo un científico de datos entrega resultadosAnte estos desafíos, tan vitales para la supervivencia de la empresa, este profesional confía en la tecnología y el desarrollo de habilidades digitales  para analizar datos y ofrecer soluciones para el negocio.Con ellos, el científico de datos tiene el conocimiento necesario para comprender completamente el problema, identificar qué tipo de método usar y ayudar a resolver la situación, comenzando con el tratamiento de los datos.En este paso, el objetivo es proporcionar al método elegido solo información útil para resolver el problema. Cuando se completa, aplica la solución resultante, evaluándola con métricas específicas, las mismas que mostrarán las limitaciones contenidas en la solución. Luego, con toda certeza, es hora de llevar la solución a la junta, es decir, a los propietarios del problema. El informe State of the CIO 2020 IDG  indica que el 37% de los líderes de TI son conscientes de que el análisis de datos para su negocio será el mayor motor de inversión este año.En definitiva, no hay motivos para esperar: ¡Hay que aprovechar esta tendencia global para convertirse en Científico de Datos y hacer que nuestra carrera profesional despegue sin límites! 

El futuro es colaborativo: cómo programar en equipo img
#Otros

El futuro es colaborativo: cómo programar en equipo

La colaboración, la organización, las herramientas ágiles y los estándares preestablecidos son la esencia de la programación en equipo . Para complicado, pero no lo es. A lo largo del artículo, desmitificaremos la programación colaborativa  y explicaremos, punto por punto, por qué la programación en equipos puede generar excelentes resultados, siempre y cuando todo esté diseñado con el compromiso de todos hacia el objetivo común.Cómo aprender a programar en equipoDebido a las medidas de protección relacionadas con la pandemia, el trabajo de la oficina en casa, que ya estaba creciendo, experimentó un auge, y en este escenario, el área de programación también se vio afectada. Con eso, aprender a programar en equipo se ha vuelto esencial.La programación colectiva puede ser muy interesante, en el sentido de mejorar y desarrollar habilidades sociales y compartir ideas para la creación de prototipos y el conocimiento. Pero para eso es preciso tener cierta pautas en claro:  Al inicio hay que concentrarse en la organización de tareas y la comprensión del objetivo. Luego, realizar una primera reunión virtual con el equipo involucrado, dividiendo el proyecto en módulos, estableciendo una interfaz entre cada uno de ellos. Por lo tanto, es más práctico definir las funciones de cada profesional y los parámetros que se crearán para cada etapa. Las reuniones deben ser frecuentes, preferiblemente semanales, con horarios y fechas fijas. En la primera reunión virtual, que guiará las siguientes, es interesante definir las siguientes acciones:➜ Creación de un documento con todos los estándares establecidos, verificando si abarcan lo que todo el equipo quiere para que se desarrolle la plataforma;➜ Elegir a una persona responsable de monitorear el código, que funcionará como  tutor para asegurarse de que estas normas se cumplan y se organicen;➜ Alentar a los miembros a aportar ideas para mejorar lo que ya se ha definido, estableciendo nuevas conversaciones rápidas, incluso fuera de la reunión semanal;➜ Definir herramientas y metodologías ágiles para que todos puedan usar durante el desarrollo de la plataforma;➜ Establecer plazos claros, dividirlos en macros y micros, tanto para el equipo como para el individuo. Es mejor sentir la dinámica de su equipo y adaptar la forma de las entregas.Herramientas para la programación en equipo.Hay muchas herramientas que ayudan y muchos equipos para programar juntos. La metodología Kanban y Scrum son excelentes ejemplos de optimización, ya que inducen entornos más colaborativos y flexibles durante el proceso. Y con el equipo trabajando de forma remota, un buen consejo es mantener siempre un chat para compartir lo que está haciendo, responder preguntas, señalar errores, compartir ideas para soluciones. El Slack puede ser una buena alternativa para este chat, compartiendo conversaciones entre los módulos.El GitHub también funciona bien, donde el equipo usa el control de versión del código fuente de la plataforma de alojamiento usando Git, lo que permite a los usuarios registrados contribuir en proyectos privados y de código abierto, donde sea que estén.Y si tu equipo o proyecto es más grande, Trello es una alternativa, porque puede dividir las pestañas en: referencias o recursos (todos los archivos necesarios para acceder), backlog de Sprint (listas de tareas que deben completarse durante el Sprint) , bloqueado (impedimentos externos al progreso del trabajo), módulos en progreso, informe de errores (todos los problemas encontrados en el código a resolver) así como todas aquellas tareas que ya se han completado. Revisando códigos juntosEscribir una solución, un texto u otro material solo a los ojos de quienes lo produjeron puede traer un resultado menos cercano a la realidad que si el mismo código está sujeto a otras evaluaciones y opiniones.En el caso de la programación en equipo, la contribución de todos garantizará un resultado más consistente, ya que existe una diversidad de ideas involucradas, historias y seres humanos, además de conocimiento técnico y conocimientos únicos. Y cuando se trata de revisar el código, esta condición del equipo cuenta y mucho. En este momento, es necesario leer y comprender qué hace ese algoritmo, es decir, estudiar, aunque sea indirectamente, diferentes formas y soluciones de problemas de lo que normalmente haríamos.Cuando el equipo es diverso, con consenso democrático, cada revisor de código leerá y comprenderá el algoritmo desde su perspectiva para aprobarlo. Pronto, el cliente tendrá una solución mucho más robusta y asertiva.En Digital House  todos tienen la oportunidad de mejorar sus conocimientos de programación, para que pueda realizar y participar mejor en el trabajo de programación en equipo, incluso de forma remota. En nuestro programa de cursos en el área de programación  tenemos el programa Desarrollo Web Full Stack, en el que aprende a trabajar de forma colaborativa, utilizando metodologías ágiles, con el dominio del desarrollo de sitios web y sistemas web, utilizando lenguajes de programación como HTML, PHP, Javascript, Laravel, React y más.

Lo que necesitas saber para convertirte en un científico de datos img
#Datos

Lo que necesitas saber para convertirte en un científico de datos

¿Quiénes son los científicos de datos?Los científicos son personas curiosas, investigadoras e interrogantes con un gran poder de análisis y observación. El Data Scientist es así, traduciendo información, construyendo probabilidades y generando predicciones más ciertas para que un negocio prospere.El informe Connectivity Benchmark 2020 , el MuleSoft, habló con 800 líderes en organizaciones con al menos 1,000 empleados, EE. UU., Reino Unido, Francia, Alemania, Países Bajos, Australia, Singapur, Hong Kong y Japón, y señaló que las cuatro prioridades principales sus inversiones en TI fueron: seguridad (53%), big data y análisis (48%), estrategia multicloud (41%) e inteligencia artificial / aprendizaje automático (41%). Tenga en cuenta que todos están relacionados con los datos.Y, para que esta inversión traiga resultados, estas compañías saben que es necesario integrarse con los sistemas existentes. También según la encuesta, las tres funciones comerciales principales con necesidades para esta integración son: analistas comerciales (40%), científicos de datos (38%) y atención al cliente (38%). Aquí, está claro que el científico de datos actual no puede quedarse en la burbuja de TI. Debe participar activamente en la toma de decisiones, ya que los datos son el nuevo petróleo.Primeros pasos para convertirse en un científico de datosCada Data Scientist tiene un lado autodidacta. Curioso, estudia mucho, investiga y busca nuevas tecnologías por su cuenta. Así que es buena idea buscar comunidades, grupos y eventos gratuitos para conocer las nuevas tecnologías.  Conocimientos básicos de la base de datos y la estructura del lenguaje de programación.El prerrequisito básico para esta carrera es tener un conocimiento básico de bases de datos relacionales o no relacionales (SQL y NoSQL) y en lenguajes de programación .Para "diseccionar" una base de datos, como la investigación de laboratorio, y explorarla en su totalidad, se necesita aprender algunos lenguajes como R y Python, creando su modelo de algoritmo, así como la estructura para asignar variables, vectores, matrices, bucles, etc.  Dominar mínimamente las estadísticasCuartiles, percentiles, varianza, desviación estándar y lo básico en cálculos matemáticos como álgebra, regresión, comprensión de la tendencia de los datos al pensar en la representación visual en gráficos exploratorios. Es importante saber sobre todo esto, ahora mismo para comprender el comportamiento de los datos para aplicar un algoritmo.  Para convertirse en un Data Scientist, hacer un curso corto basado en la práctica es una alternativa muy inteligente. De esta manera, en pocos meses es posible convertirse en uno de los profesionales más buscando por las industrias en todo el mundo.