MENU

| AR

Sedes

Cursos

Carreras

Programas Ejecutivos

Paises

ASEA: “La ley de emprendedores es una herramienta 100% inclusiva”

ASEA: “La ley de emprendedores es una herramienta 100% inclusiva”
#Marketing
16 de nov - min de lectura


Francisco Torres Vidal, Coordinador en ASEA, profundiza los pormenores y beneficios que traerá la ley en caso de ser promulgada La ley de emprendedores será tratada en la Cámara de Diputados para impulsar la creación de nuevas empresas que apresurarán la formación de nuevos emprendimientos, entre otras cosas. En julio de este año, la Asociación de Emprendedores Argentinos (ASEA) promovió la ley junto a la Subsecretaría de Emprendedores y PYMEs, que obtuvo certamen favorable en Diputados y sigue tratándose en Cámara. Se prevé que tome vigencia a mediados del año que viene. El proyecto impulsa, entre otras cosas, la creación de Sociedades por Acciones Simplificadas (SAS), que podrán acceder a la constitución de un CUIT o CDI en 24 horas, abrir una cuenta bancaria en ese plazo, decidir el precio de sus acciones, y estimular la inversión entre otros beneficios. Por su parte, el presidente Mauricio Macri solicitó en el 52° Coloquio de Idea que la aprobación de la ley “ es vital para crear empleo joven y de calidad”. A su vez, según un estudio realizado por el IAE Business School, la tasa de actividad emprendedora aumentó 4 puntos porcentuales con respecto al año anterior en el país (de 14 a 18%). [caption id="attachment_1274" align="alignleft" width="300"]francisco-torres-vidal Francisco Torres Vidal, Coordinador en ASEA[/caption] Francisco Torres Vidal, Coordinador en ASEA, una de las impulsoras más activas de esta ley, nos cuenta cómo evolucionó la ley desde que comenzó como propuesta y nos habla del peso digital en el mundo actual. ¿Cómo sigue el proceso de promulgación de la ley luego de haber sido tratada en diputados? Estamos yendo paso a paso. En primer lugar, hemos llegado a grandes acuerdos con todos los bloques políticos durante las reuniones de comisión y ahora estamos aguardando que el proyecto se vote en la Cámara de Diputados. Luego el proyecto se envía al Senado para su revisión y si todo sale como lo planeamos, el Poder Ejecutivo debería estar listo para promulgarla. Como casos cercanos, tenemos la ley PYME que entró en vigencia a dos meses de sancionarse, y en México donde se presentó un proyecto similar su implementación también fue muy rápida por lo que somos muy optimistas. Igualmente necesitamos el apoyo de todos los emprendedores y que sigan firmando la petición en change.org/leyasea. ¿Estás conforme con los avances y cambios realizados? Creemos que todas las propuestas de cambio han sido muy positivas y no alteran el espíritu innovador de la ley: se crea el consejo federal de emprendimiento y también se convierte en ley la iniciativa de fondo semilla. ¿Quiénes se verán más favorecidos por la ley y qué cambios se verán una vez que comience a regir? La sociedad en general, emprendedores, inversores, trabajadores y cualquier persona que esté pensando en emprender. La ley de emprendedores es una herramienta cien por ciento inclusiva pensada para el siglo XXI que busca federalizar el emprendimiento, bajar las barreras burocráticas y facilitar la inversión en capital emprendedor. Hoy gracias al poder de internet, con la incorporación del financiamiento colectivo, todos los emprendedores del país podrán subir sus proyectos y obtener financiamiento sin importar el punto geográfico en que se encuentren o si están cerca de los circuitos tradicionales. ¿Cómo ves el panorama del sector emprendedor digital en el país para 2017? Con la reglamentación de la ley PYME, la de Software y la sanción de la ley de Emprendedores y Capital Emprendedor se sientan las bases para crear una Nación emprendedora, en la que emprender será una verdadera opción como carrera profesional y con la que se acompañará en los primeros años a aquellos que decidan transitar éste camino. Creemos que la Argentina está viviendo una verdadera transformación digital y con la incorporación de cada vez más tecnologías a sectores tradicionales como el agro, las finanzas, la educación y la salud, se vivirá una revolución que favorecerá muchísimo al sector incorporando cada vez mayores actores y generando aún más demanda.

Otras Noticias

Ejemplos reales de cómo la Ciencia de Datos ayuda a resolver problemas img
#Datos

Ejemplos reales de cómo la Ciencia de Datos ayuda a resolver problemas

El profesional de Data Science, también conocido como Data Scientist, es un experto en resolución de problemas, ayudando a las empresas a reducir costos, aumentar la productividad y proporcionar datos para la toma de decisiones, incluso durante las crisis económicas. Por todo esto, el científico de datos es una de las profesiones más demandadas en el presente y con mejores perspectivas a futuro.  Este profesional, objetivamente, tiene el papel principal de transformar los datos en inteligencia para el negocio.  Ejemplos de cómo la Ciencia de Datos ayuda a tomar decisionesLas armas de Data Scientist tienen una conexión directa con la inteligencia lógica, el monitoreo y la interpretación precisa y precisa de los algoritmos.A continuación, presentamos preguntas y situaciones que sirven como ejemplos de aplicaciones de Data Science:➜ Mostrar qué productos realmente interesan a los clientes de una empresa.➜ En los próximos dos meses, ¿qué clientes probablemente no pagarán?➜ En el período posterior a la crisis, ¿cuánto tiempo le tomará a una compañía en particular restablecer su negocio?  ➜ Para que esto suceda, ¿qué acciones deben tomar por adelantado?➜ ¿Es mejor invertir en acciones o comprar / alquilar equipos más modernos para la producción?➜ ¿Es mejor contratar a más personas el año que viene? Si es así, ¿en qué áreas será rentable el retorno? Cómo un científico de datos entrega resultadosAnte estos desafíos, tan vitales para la supervivencia de la empresa, este profesional confía en la tecnología y el desarrollo de habilidades digitales  para analizar datos y ofrecer soluciones para el negocio.Con ellos, el científico de datos tiene el conocimiento necesario para comprender completamente el problema, identificar qué tipo de método usar y ayudar a resolver la situación, comenzando con el tratamiento de los datos.En este paso, el objetivo es proporcionar al método elegido solo información útil para resolver el problema. Cuando se completa, aplica la solución resultante, evaluándola con métricas específicas, las mismas que mostrarán las limitaciones contenidas en la solución. Luego, con toda certeza, es hora de llevar la solución a la junta, es decir, a los propietarios del problema. El informe State of the CIO 2020 IDG  indica que el 37% de los líderes de TI son conscientes de que el análisis de datos para su negocio será el mayor motor de inversión este año.En definitiva, no hay motivos para esperar: ¡Hay que aprovechar esta tendencia global para convertirse en Científico de Datos y hacer que nuestra carrera profesional despegue sin límites! 

El futuro es colaborativo: cómo programar en equipo img
#Otros

El futuro es colaborativo: cómo programar en equipo

La colaboración, la organización, las herramientas ágiles y los estándares preestablecidos son la esencia de la programación en equipo . Para complicado, pero no lo es. A lo largo del artículo, desmitificaremos la programación colaborativa  y explicaremos, punto por punto, por qué la programación en equipos puede generar excelentes resultados, siempre y cuando todo esté diseñado con el compromiso de todos hacia el objetivo común.Cómo aprender a programar en equipoDebido a las medidas de protección relacionadas con la pandemia, el trabajo de la oficina en casa, que ya estaba creciendo, experimentó un auge, y en este escenario, el área de programación también se vio afectada. Con eso, aprender a programar en equipo se ha vuelto esencial.La programación colectiva puede ser muy interesante, en el sentido de mejorar y desarrollar habilidades sociales y compartir ideas para la creación de prototipos y el conocimiento. Pero para eso es preciso tener cierta pautas en claro:  Al inicio hay que concentrarse en la organización de tareas y la comprensión del objetivo. Luego, realizar una primera reunión virtual con el equipo involucrado, dividiendo el proyecto en módulos, estableciendo una interfaz entre cada uno de ellos. Por lo tanto, es más práctico definir las funciones de cada profesional y los parámetros que se crearán para cada etapa. Las reuniones deben ser frecuentes, preferiblemente semanales, con horarios y fechas fijas. En la primera reunión virtual, que guiará las siguientes, es interesante definir las siguientes acciones:➜ Creación de un documento con todos los estándares establecidos, verificando si abarcan lo que todo el equipo quiere para que se desarrolle la plataforma;➜ Elegir a una persona responsable de monitorear el código, que funcionará como  tutor para asegurarse de que estas normas se cumplan y se organicen;➜ Alentar a los miembros a aportar ideas para mejorar lo que ya se ha definido, estableciendo nuevas conversaciones rápidas, incluso fuera de la reunión semanal;➜ Definir herramientas y metodologías ágiles para que todos puedan usar durante el desarrollo de la plataforma;➜ Establecer plazos claros, dividirlos en macros y micros, tanto para el equipo como para el individuo. Es mejor sentir la dinámica de su equipo y adaptar la forma de las entregas.Herramientas para la programación en equipo.Hay muchas herramientas que ayudan y muchos equipos para programar juntos. La metodología Kanban y Scrum son excelentes ejemplos de optimización, ya que inducen entornos más colaborativos y flexibles durante el proceso. Y con el equipo trabajando de forma remota, un buen consejo es mantener siempre un chat para compartir lo que está haciendo, responder preguntas, señalar errores, compartir ideas para soluciones. El Slack puede ser una buena alternativa para este chat, compartiendo conversaciones entre los módulos.El GitHub también funciona bien, donde el equipo usa el control de versión del código fuente de la plataforma de alojamiento usando Git, lo que permite a los usuarios registrados contribuir en proyectos privados y de código abierto, donde sea que estén.Y si tu equipo o proyecto es más grande, Trello es una alternativa, porque puede dividir las pestañas en: referencias o recursos (todos los archivos necesarios para acceder), backlog de Sprint (listas de tareas que deben completarse durante el Sprint) , bloqueado (impedimentos externos al progreso del trabajo), módulos en progreso, informe de errores (todos los problemas encontrados en el código a resolver) así como todas aquellas tareas que ya se han completado. Revisando códigos juntosEscribir una solución, un texto u otro material solo a los ojos de quienes lo produjeron puede traer un resultado menos cercano a la realidad que si el mismo código está sujeto a otras evaluaciones y opiniones.En el caso de la programación en equipo, la contribución de todos garantizará un resultado más consistente, ya que existe una diversidad de ideas involucradas, historias y seres humanos, además de conocimiento técnico y conocimientos únicos. Y cuando se trata de revisar el código, esta condición del equipo cuenta y mucho. En este momento, es necesario leer y comprender qué hace ese algoritmo, es decir, estudiar, aunque sea indirectamente, diferentes formas y soluciones de problemas de lo que normalmente haríamos.Cuando el equipo es diverso, con consenso democrático, cada revisor de código leerá y comprenderá el algoritmo desde su perspectiva para aprobarlo. Pronto, el cliente tendrá una solución mucho más robusta y asertiva.En Digital House  todos tienen la oportunidad de mejorar sus conocimientos de programación, para que pueda realizar y participar mejor en el trabajo de programación en equipo, incluso de forma remota. En nuestro programa de cursos en el área de programación  tenemos el programa Desarrollo Web Full Stack, en el que aprende a trabajar de forma colaborativa, utilizando metodologías ágiles, con el dominio del desarrollo de sitios web y sistemas web, utilizando lenguajes de programación como HTML, PHP, Javascript, Laravel, React y más.

Lo que necesitas saber para convertirte en un científico de datos img
#Datos

Lo que necesitas saber para convertirte en un científico de datos

¿Quiénes son los científicos de datos?Los científicos son personas curiosas, investigadoras e interrogantes con un gran poder de análisis y observación. El Data Scientist es así, traduciendo información, construyendo probabilidades y generando predicciones más ciertas para que un negocio prospere.El informe Connectivity Benchmark 2020 , el MuleSoft, habló con 800 líderes en organizaciones con al menos 1,000 empleados, EE. UU., Reino Unido, Francia, Alemania, Países Bajos, Australia, Singapur, Hong Kong y Japón, y señaló que las cuatro prioridades principales sus inversiones en TI fueron: seguridad (53%), big data y análisis (48%), estrategia multicloud (41%) e inteligencia artificial / aprendizaje automático (41%). Tenga en cuenta que todos están relacionados con los datos.Y, para que esta inversión traiga resultados, estas compañías saben que es necesario integrarse con los sistemas existentes. También según la encuesta, las tres funciones comerciales principales con necesidades para esta integración son: analistas comerciales (40%), científicos de datos (38%) y atención al cliente (38%). Aquí, está claro que el científico de datos actual no puede quedarse en la burbuja de TI. Debe participar activamente en la toma de decisiones, ya que los datos son el nuevo petróleo.Primeros pasos para convertirse en un científico de datosCada Data Scientist tiene un lado autodidacta. Curioso, estudia mucho, investiga y busca nuevas tecnologías por su cuenta. Así que es buena idea buscar comunidades, grupos y eventos gratuitos para conocer las nuevas tecnologías.  Conocimientos básicos de la base de datos y la estructura del lenguaje de programación.El prerrequisito básico para esta carrera es tener un conocimiento básico de bases de datos relacionales o no relacionales (SQL y NoSQL) y en lenguajes de programación .Para "diseccionar" una base de datos, como la investigación de laboratorio, y explorarla en su totalidad, se necesita aprender algunos lenguajes como R y Python, creando su modelo de algoritmo, así como la estructura para asignar variables, vectores, matrices, bucles, etc.  Dominar mínimamente las estadísticasCuartiles, percentiles, varianza, desviación estándar y lo básico en cálculos matemáticos como álgebra, regresión, comprensión de la tendencia de los datos al pensar en la representación visual en gráficos exploratorios. Es importante saber sobre todo esto, ahora mismo para comprender el comportamiento de los datos para aplicar un algoritmo.  Para convertirse en un Data Scientist, hacer un curso corto basado en la práctica es una alternativa muy inteligente. De esta manera, en pocos meses es posible convertirse en uno de los profesionales más buscando por las industrias en todo el mundo.