MENU

| BR

Campus

Cursos

Programas Executivos

Programas Executivos

Paises

Design Thinking: como descobrir o que os seus clientes querem

Design Thinking: como descobrir o que os seus clientes querem
#UX
23 de abril - min de leitura

Entenda como o Design Thinking pode ajudar na jornada do seu consumidor, e mais, descubra como é importante ter um time diverso e com vários pontos de vista.


Diversidade impulsiona criatividade organizacional e este conjunto é a base para o design thinking em cada uma de suas etapas. Em estudo da consultoria McKinsey and Cosobre, feito com empresas globais, as com maior diversidade de gênero têm 21% mais chances de apresentar resultados acima da média do mercado do que aquelas com menor diversidade do grupo. E em diversidade cultural e étnica, esse número sobe para 33%. 

Entre os benefícios que comprovam que a diversidade no ambiente de trabalho é negócio, está o estímulo da criatividade organizacional. Com a valorização das diferenças, os funcionários ficam mais à vontade para expressar suas ideias e engajados para a conquista dos objetivos da empresa.

No design thinking, o produto ou serviço dá seu ar da graça no mercado rapidamente, mas com base sólida estratégica, e a diversidade age justamente na ampliação da margem de acerto, já que vários tipos de pessoas estão envolvidas no processo todo. Assim, as experiências dos consumidores terão muito mais valor e significado, reduzindo as chances de dar ruim, na hora da utilização pelo cliente.

O que é design thinking?

Esse conceito foi difundido na década de 1990 com a empresa norte-americana IDEO, desenvolvedora de inovações e olhar centrado no design. Trata-se de um método prático-criativo que analisa quais são as propostas que as empresas têm para trazer respostas ligeiras e precisas aos problemas apresentados por seus produtos ou serviços.

Assim, o segredo no design thinking pode não estar somente no método, mas como falamos, em pontos de vista diferentes. Explicamos melhor essa afirmação nas próximas linhas, mas deixamos duas dicas sobre esse método: consumidores são os protagonistas de cada etapa e o quesito diversidade é a chave-mestra do desenvolvimento.


Como aplicar o design thinking

Para entender um pouco mais sobre o conceito, imagine um modelo de Diamante Duplo. Esta é a imagem que ilustra as quatro etapas do design thinking, divididas pelos processos de imersão, ideação, prototipação e desenvolvimento. 

O foco de cada estágio é captar ideias, criar protótipos, fazer testes e mensurar a aceitação do público, antes de um produto ou serviço ser inserido no mercado. Resumindo, é um brainstorming dinâmico e diferente, mas tudo organizado.

As etapas do Design Thinking  

Imersão

Neste ponto, os pesquisadores precisam mergulhar de cabeça no assunto, fazendo questionamentos como: “qual é a solução que os meus clientes precisam?”. É se colocar na pele do freguês. Só assim haverá identificação das suas necessidades que podem virar oportunidades de negócio.

A famosa empatia define bem o método imersivo. Aí entra a observação quanto às atitudes comportamentais das pessoas, com o julgamento e preconceitos deixados de lado para compreender o contexto social e histórico delas, levando em conta questões de gênero, minorias e, a partir daí, tornar possível a identificação de outras alternativas, não apenas as tradicionais, que respondam melhor uma demanda.

Ideação

Se empatia é a palavra da vez na etapa anterior, nesta a ordem é “pluralidade”. Na ideação, toda a equipe envolvida no projeto é convidada ao estímulo de criatividade e a compartilhar as ideias. 

É o momento que as diferentes opiniões e perspectivas sobre o mesmo objeto são colocadas na mesa, sem nunca perder o foco - a satisfação do cliente. Tanto que os especialistas de design thinking recomendam que profissionais de áreas diversas participem do processo para trazer mais bagagem à discussão, com vários pontos de vista do mesmo problema, enriquecendo a análise e estreitando as opções para a questão.

Prototipação

Também conhecido como hora de colocar a mão na massa, este é o momento de materializar as melhores ideias discutidas lá atrás. Nele, há a criação dos protótipos e novos testes, novos feedbacks e hipóteses, para realizar ajustes finais.

Aqui, a empresa deverá desenvolver mais de um protótipo para ter conhecimento sobre qual é a versão que melhor atenderá às necessidades do cliente. Depois de passar pela linha criativa, os produtos ou serviços são testados para decidir se a ideia está pronta para o mundo ou se ainda precisa de correções.

Desenvolvimento

Esta é a última fase, da aplicação na prática. Aqui, depois do protótipo ter tido um resultado positivo nos testes, o produto ou serviço já pode ser lançado ao consumidor. O time de comunicação e marketing entra no jogo para vender a solução criada. 

O impacto na experiência do usuário

Nessa missão de sempre melhorar a Experiência do Usuário (UX), fica claro o quanto é importante estar aberto a compreender fora da nossa bolha, ou seja, ver o mundo com uma perspectiva mais diversa para entender o outro. Assim, a empresa abre seu leque de oportunidades, aumenta a possibilidade de vender mais e diminui os índices de rejeição. 

Na Digital House temos o curso de Experiência do Usuário (UX) que traz esse universo, com aulas práticas e teóricas, para expandir não só seus horizontes nesta jornada do consumidor, mas as oportunidades da sua carreira profissional. Vamos nessa?

Leia mais no blog DH:

Como começar em UX Design

Etnografia no UX: como entender a relação do consumidor com produtos e serviços

Vantagens em contratar um UX Designer Júnior

E aí, já segue a gente no Twitter? Vem pra rede, vamos conversar sobre habilidades digitais! ;)

Outras notícias

Melhores áreas para trabalhar: 6 profissões do futuro para ficar de olho img
#UX
#Marketing
#Carreira
#Tecnologia
#Dados

Melhores áreas para trabalhar: 6 profissões do futuro para ficar de olho

Antes de saber as áreas, é claro que não podemos desconsiderar o ano de 2020 e todo o contexto pandêmico que vivemos. O ano foi um grande empurrão para que a tecnologia e as habilidades digitais dominassem ainda mais o mercado, pois a grande maioria dos serviços buscou aderir à transformação digital para não ficar para trás.Sendo assim, muitos empregos tradicionais sofreram grandes mudanças, não somente no ano passado, mas também nos últimos anos, por estar em um processo de revolução tecnológica.Quais são as melhores áreas para trabalhar?O cenário profissional está seguindo para algumas áreas específicas, de acordo com as tendências de mercado. Confira abaixo as 7 principais áreas e profissões do futuro para considerar em uma decisão:ANALISTA DE DADOS E CIENTISTA DE DADOSSegundo o relatório do World Economic Forum, as profissões de analista de dados (Data Analytics) e cientista de dados (Data Science) estão em primeiro lugar como alta demanda em 2021. Dados são recursos valiosos para tomada de decisões, desenvolvimento de produtos e análise de mercado. A média salarial é de R$ 4.852, de acordo com o site Glassdoor para analista de dados. Já para cientista de dados, a média salarial é de R$ 7.834. Na Digital House, nós temos os cursos para ambas as profissões, tanto Data Analytics quanto Data Science. Confira as grades e seja um especialista na área!ESPECIALISTA EM INTELIGÊNCIA ARTIFICIAL E MACHINE LEARNINGEm paralelo com a transformação digital, acelerada no contexto de 2020, as carreiras associadas à Inteligência Artificial (IA) e Machine Learning ganharam muito espaço. O salário médio é de R$ 9.441 no Brasil, sendo que as chances de contratação no exterior são grandes, podendo trabalhar remotamente. Além disso, a área possui grande necessidade de demanda para poucos profissionais qualificados. Confira a grade do curso de Inteligência Artificial da Digital House. Você também pode contribuir com a transformação digital nas grandes empresas.PROFISSIONAIS DE MARKETING DIGITALCom a ascensão do meio online, a necessidade de assessoria na área aumenta cada vez mais. São diversas profissões dentro do Marketing Digital, possibilitando a construção de um time com pessoas de diversas formações acadêmicas.Marketing Digital e Marketing Digital Avançado são os cursos oferecidos pela DH e o salário médio para o profissional da área é de R$ 7.578 por mês. Investir nessa área não tem erro!ANALISTA DE SEGURANÇA DA INFORMAÇÃOA preocupação com a segurança de dados nas empresas faz com que a demanda por profissionais de segurança da informação seja alta.Pessoas com habilidades em programação, que possuem formação em Ciência da Computação ou certificações específicas da área, têm salário médio de R$ 4.862.Que tal ingressar na área? Confira o curso de Cyber Security da Digital House e tenha aulas com os melhores especialistas do mercado.PROJECT MANAGERSEssa é a carreira para quem faz a gestão de projetos, acompanhando prazos e indicadores para alcançar as expectativas do negócio. Metodologias ágeis e visão de mercado são essenciais para isso. A carreira paga, em média, R$ 168 mil ao ano.Conquiste sua estabilidade financeira e alavanque sua carreira com o curso de Gestão de Produtos Digitais da Digital House.UXEssa área abarca profissionais que garantem a boa relação entre a empresa e o seu consumidor, com boas experiências. Num cenário atual, onde o comportamento das pessoas se torna cada vez mais exigente com as transformações digitais, o profissional que garante a melhor experiência do usuário é cada vez mais necessário. O salário médio é de R$ 5.760. A DH oferece o curso de Experiência do Usuário (UX), que prepara o aluno para otimizar resultados das empresas com seus consumidores.Ingresse em uma das profissões do futuroFicou bem claro que a tecnologia está dominando as profissões que estão em alta, não? Conforme as empresas passam pelo processo de transformação digital para se manterem firmes no mercado, determinadas habilidades e competências se tornam cada vez mais necessárias para as pessoas.A Digital House oferece diversos cursos que formam especialistas em todas as áreas do futuro, em aulas ministradas por professores que estão no mercado. Conheça os cursos de marketing digital, UX, dados, programação e negócios.Leia mais no blog DH:+ Departamento de carreiras: 95% de empregabilidade na Digital House+ Tudo que um desenvolvedor Full Stack precisa saber+ Aprenda a criar um storytelling com dadosE aí, já segue a gente no Twitter? Vem pra rede, vamos conversar sobre habilidades digitais! ;)

 Transformação digital nas empresas: o que é e por que faz tanta diferença? img
#UX
#Marketing
#Carreira
#Tecnologia
#Dados

Transformação digital nas empresas: o que é e por que faz tanta diferença?

A transformação digital é um assunto que aparece constantemente em empresas de qualquer setor. Não é algo para o futuro, mas sim um conceito necessário no presente, para que as empresas consigam seguir prosperando, sem ficar para trás.Considerando tudo isso, confira esse texto com o que você precisa saber sobre transformação digital.O que significa transformação digital?Transformação digital é a implementação de tecnologias digitais, através da mudança estrutural das organizações, para solucionar problemas e trazer melhores resultados no desempenho, produtividade e eficácia dos processos.Ao iniciar o processo de transformação digital nas empresas, a tecnologia se torna o fator principal em uma estratégia de gestão e não algo presente superficialmente.O processo demanda tempo e recursos, mas qualquer empresa, seja de grande ou pequeno porte, pode aderir à transformação digital, pois mesmo com menos dinheiro é possível planejar estratégias.Qual a importância da transformação digital nas empresas?Estamos vivendo uma revolução tecnológica, em que as coisas estão ficando cada vez mais rápidas e recebemos muito mais informações em menos tempo e de maneira acessível, ou seja, a transformação digital traz um impacto muito grande na sociedade.Em paralelo a esse desenvolvimento, as pessoas também estão mudando de comportamento, exigindo tudo com mais rapidez e facilidade. Temos produtos e serviços disponíveis de forma digital, algo que não existia até alguns anos atrás.Por isso, as empresas precisam se adaptar a esses costumes, otimizando novas soluções em seus processos e as possibilidades são ilimitadas.Empresas que passaram por transformação digitalConfira três exemplos de transformação digital em empresas que se tornaram referência em suas áreas de mercado:NetflixA Netflix se tornou uma das principais produtoras de conteúdo no mundo. Seu sucesso começou a partir da transformação digital promovida pelo serviço de streaming, adequado às mídias digitais. Quem lembra das videolocadoras nas cidades? Pois é, a Netflix teve a grande sacada de perceber o avanço da tecnologia e a necessidade dos consumidores, dominando o mercado e fechando muitas lojas.Magazine LuizaO grande crescimento da marca veio a partir da estratégia de transformação digital, onde o e-commerce passou a ser a principal referência de compras aos seus clientes. Não foi preciso fechar as lojas físicas para que o processo desse certo, mas sim adaptá-las tecnologicamente, capacitando seus profissionais, alterando processos de venda e gerando muitas campanhas de marketing digital a partir das promoções de produtos.Por conta disso, em 2019, a Magazine Luiza alcançou quase R$1 bilhão em lucros. SpotifyA Spotify é a principal referência de empresa no mercado musical. Seu grande crescimento partiu de uma transformação digital, onde através de uma metodologia ágil e uma análise detalhada de seus dados, a empresa desenvolveu um modelo de inteligência artificial baseada no machine learning, adequando a plataforma aos consumidores atuais.Sendo assim, o aplicativo passou a identificar quais músicas seus usuários mais gostam de ouvir, baseando-se no histórico de cada um, e podendo fazer, inclusive, indicações de novas músicas, artistas e álbuns. Sua usabilidade passou a atrair muitas pessoas que se interessam pelo mundo musical e querem buscar novas referências.O que fazer para passar pela transformação digital?O que há de comum em todas as empresas que passaram pela transformação digital e obtiveram êxito? Destaca-se a preocupação em solucionar os problemas dos clientes, atrelado aos novos comportamentos de consumo e à inovação tecnológica.Para que o processo de transformação digital nas empresas possa dar certo, é necessário prestar atenção em quatro pontos importantes. Confira abaixo:Estratégia: qualquer inclusão de processo deve estar alinhada com a estratégia da empresa, utilizando coisas que já funcionam e sua base de clientes.Modelo de digitalização: é necessário escolher um modelo de digitalização para desenvolver capacidades e formas de trabalho.Organização: é necessário estruturar a gestão e toda a equipe que conduzirá o processo de transformação digital.Cultura: todo esse processo só é possível se a empresa possuir uma cultura que busque inovações e novos caminhos na forma de realizar seus negócios. Seja qual for o mercado de atuação, as organizações (sejam grandes ou pequenas) devem estar sempre atentas às novas tendências tecnológicas e mudanças no comportamento de consumo dos usuários.Quais são as insatisfações dos clientes com os serviços disponíveis no mercado? A partir disso, trace o caminho para a criação de cases que sirvam como exemplos de transformação digital.Não é inspirador? Que tal seguir essa carreira e atuar diretamente com transformações digitais? A Digital House oferece o curso de Data Analytics, onde você pode se tornar um analista de dados, encontrando novos insights para transformações digitais e o curso de Gestão de Produtos Digitais, que te capacita a gerenciar os processos como um todo.Leia mais no blog DH:+ Departamento de carreiras: 95% de empregabilidade na Digital House+ Tudo que um desenvolvedor Full Stack precisa saber+ Aprenda a criar um storytelling com dadosE aí, já segue a gente no Twitter? Vem pra rede, vamos conversar sobre habilidades digitais! ;)

Modelos de classificação: entenda como funciona o aprendizado de máquina img
#Dados

Modelos de classificação: entenda como funciona o aprendizado de máquina

Olá, meu nome é Rudiney. Sou professor do curso de Data Science na Digital House Brasil e eu estou aqui pra falar sobre modelos de classificação em Data Science. O que são modelos de classificação?Modelos de classificação são um ramo de aplicação do aprendizado de máquina, no campo da ciência de dados. Resumidamente, os modelos de classificação têm o propósito de classificar características de um sistema de dados, de modo a associar um conjunto de observações sob a mesma caracterização. Para entendermos melhor o ramo da classificação, vamos voltar alguns passos e relembrar o conceito de aprendizado de máquina. Ramificações do campo de aprendizado de máquinaO aprendizado de máquina é o processo de criação de modelos que podem realizar uma certa tarefa sem a necessidade de que um humano a tenha programado para isso. De forma geral, como pode ser visto na figura acima, podemos reduzir o universo do aprendizado de máquina em três grandes vertentes: Aprendizado por reforçoO aprendizado por reforço, em que um agente interage com um ambiente através da troca simultânea de sinais, com o agente enviando um informação sobre uma ação e o ambiente enviando informação sobre um estado, submetido à ação do agente. O agente pode receber recompensas por uma determinada ação, submetido à ação do ambiente. O aprendizado por reforço endereça essa relação de ação e recompensa, estudando como os agentes de um software devem tomar ações em um ambiente, de modo a maximizar o conceito de recompensa cumulativa. Ele é encontrado na inteligência artificial, robótica e jogos.Aprendizado não supervisionadoO aprendizado não supervisionado envolve a posse de um dataset e a aplicação de técnicas estatísticas e de aprendizado de máquina para extrair uma estrutura dos dados e a relação entre os atributos. O aprendizado não supervisionado procura padrões nos dados e por não haverem rótulos (ou os valores a serem previstos pelo modelo), usados no treinamento dos modelos supervisionados, é preciso adotar outras técnicas de aprendizagem para realizar previsões. Ele pode ser encontrado em segmentação de clientes e sistemas de recomendação, mas também em nossos bebês que aprendem sem supervisão quando nos observam e imitam nossa ações. Aprendizado supervisionadoO aprendizado supervisionado é aquele em que há à disposição uma lista de rótulos da variável resposta, observações com resultado conhecido, que podem treinar o modelo e permiti-lo fazer previsões. O aprendizado supervisionado se divide em duas categorias. A seguir vemos a ramificação em dois tipos, os modelos de classificação e os de regressão.Ramificações do subcampo de aprendizado supervisionadoComo visto na figura acima, temos as regressões, usadas para estimativas e previsões numéricas, como a de preços em mercados imobiliários ou a quantidade de um item de vestuário a ser produzido. Temos também os modelos de classificação (supervisionados), o tema central desse texto, que veremos em detalhes a seguir.Como funciona aprendizado de máquina?Vamos então iniciar nossa discussão sobre alguns dos mais conhecidos modelos de aprendizado supervisionado de máquinas classificadoras. Os modelos de classificação são do tipo supervisionado e predizem resultados de tipo classe. Isso significa que um modelo de classificação vai prever qualquer tipo de categoria, ou classe, tal como tipo de objeto ou classificação. Pode ser um tipo de fruta (como pêras ou maçãs), pode ser um diagnóstico médico (como para tumores malignos ou benignos), pode ser a avaliação de uma operação de crédito (como fraude ou não fraude).Um modelo de classificação usa atributos de um indivíduo (ou grupo de indivíduos) ou entidade para prever a classe desse indivíduo ou entidade. Suponha que trabalhe em uma empresa de entrega de hortifrúti e queira desenvolver um modelo que reconheça um tipo de fruta, entre uma maçã, ou uma banana, ou uma laranja, ou um abacaxi. Baseando-se nos atributos de forma, dimensões, cor e peso, você tenta predizer a chance de uma fruta ser classificada com cada um dos rótulos descritos acima, diferenciando uma fruta da outra com base na combinação de seus atributos. Diz-se que o modelo aprende que algumas combinações de atributos pertencem a classes ou categorias específicas da amostra. O modelo entende que a uma determinada combinação média de atributos será dado uma classificação de sua categoria, uma outra combinação média desses atributos será interpretada com uma classificação em uma categoria diferente e assim por diante. Os rótulos utilizados para a classificação podem ser binários, como positivo (+) e negativo (-), sim ou não, verdadeiro ou falso, presente ou não presente. Os rótulos também podem conter múltiplas classes, como iniciante, intermediário ou avançado. Ou como laranja, maçã e banana.Quer saber mais sobre árvores de decisão?  Muitos são os modelos propostos para a tarefa de classificação que apresentam diferentes abordagens. Assim, essa será uma série discutindo alguns modelos de classificação. Falaremos das Árvores de Decisão, as Decision Trees, que são um sistema de suporte à decisão que utilizam modelos que copiam as ramificações de árvores para expressar o processo de tomada de decisão e suas consequências. Utilizando declarações de controle condicional, o modelo tenta prever resultados de eventos, custo de recursos e utilidade, entre outros. Falaremos também do Naïve Bayes, um classificador probabilístico, que tira proveito do teorema proposto por Thomas Bayes (1701 - 1761), que descreve a probabilidade de um evento ocorrer com base no conhecimento prévio das condições que podem estar relacionadas a esse evento. E por fim, discutiremos ainda sobre Máquinas de vetores de Suporte, que representam as observações do dataset como pontos no espaço, de modo que as categorias de observações sejam separadas por um hiato espacial (o mais amplo possível) não populado por pontos. Assim novas observações podem ser mapeadas naquele espaço e previsões de classificação dessas observações de um lado da divisão ou outro, podem ser realizadas.Assim, nos vemos em breve :) Quer estudar Data Science na prática? O melhor jeito de aprender é fazendo! No curso para se tornar cientista de dados da DH, você tem aulas ao vivo com professores que estão no mercado. Que tal baixar o programa do curso e ver a infinidade de temas que você pode começar a estudar?Não deixe de conferir também nossa biblioteca de conteúdo e o Blog DH, com diversos outros artigos e materiais interessantes sobre tecnologia.Vem ler mais artigos sobre dados:+ Conheça as tendências digitais para 2021+ Como escolher sua carreira na área de dados+ Como implementar uma cultura de dadosE aí, já segue a gente no Twitter? Vem pra rede, vamos conversar sobre habilidades digitais! ;)